direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C5×C23⋊2Q8, C10.1582+ 1+4, C23⋊2(C5×Q8), (C22×C10)⋊2Q8, C22⋊Q8⋊10C10, C22.4(Q8×C10), C24.18(C2×C10), (Q8×C10)⋊29C22, C10.61(C22×Q8), (C2×C20).672C23, (C2×C10).363C24, (C23×C10).18C22, C23.39(C22×C10), C22.37(C23×C10), C2.10(C5×2+ 1+4), (C22×C20).451C22, (C22×C10).262C23, C4⋊C4⋊4(C2×C10), C2.7(Q8×C2×C10), (C2×Q8)⋊4(C2×C10), (C5×C4⋊C4)⋊38C22, (C5×C22⋊Q8)⋊37C2, (C2×C10).17(C2×Q8), (C10×C22⋊C4).33C2, (C2×C22⋊C4).13C10, C22⋊C4.17(C2×C10), (C2×C4).30(C22×C10), (C22×C4).63(C2×C10), (C5×C22⋊C4).151C22, SmallGroup(320,1545)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C2×C10 — C2×C20 — C5×C22⋊C4 — C5×C22⋊Q8 — C5×C23⋊2Q8 |
Generators and relations for C5×C23⋊2Q8
G = < a,b,c,d,e,f | a5=b2=c2=d2=e4=1, f2=e2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ebe-1=fbf-1=bd=db, fcf-1=cd=dc, ce=ec, de=ed, df=fd, fef-1=e-1 >
Subgroups: 386 in 242 conjugacy classes, 162 normal (10 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, Q8, C23, C23, C10, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, C24, C20, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C22⋊Q8, C2×C20, C2×C20, C5×Q8, C22×C10, C22×C10, C23⋊2Q8, C5×C22⋊C4, C5×C4⋊C4, C22×C20, Q8×C10, C23×C10, C10×C22⋊C4, C5×C22⋊Q8, C5×C23⋊2Q8
Quotients: C1, C2, C22, C5, Q8, C23, C10, C2×Q8, C24, C2×C10, C22×Q8, 2+ 1+4, C5×Q8, C22×C10, C23⋊2Q8, Q8×C10, C23×C10, Q8×C2×C10, C5×2+ 1+4, C5×C23⋊2Q8
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 30)(2 26)(3 27)(4 28)(5 29)(6 76)(7 77)(8 78)(9 79)(10 80)(11 16)(12 17)(13 18)(14 19)(15 20)(21 33)(22 34)(23 35)(24 31)(25 32)(36 43)(37 44)(38 45)(39 41)(40 42)(46 51)(47 52)(48 53)(49 54)(50 55)(56 63)(57 64)(58 65)(59 61)(60 62)(66 71)(67 72)(68 73)(69 74)(70 75)
(1 30)(2 26)(3 27)(4 28)(5 29)(6 11)(7 12)(8 13)(9 14)(10 15)(16 76)(17 77)(18 78)(19 79)(20 80)(21 33)(22 34)(23 35)(24 31)(25 32)(36 50)(37 46)(38 47)(39 48)(40 49)(41 53)(42 54)(43 55)(44 51)(45 52)(56 63)(57 64)(58 65)(59 61)(60 62)(66 71)(67 72)(68 73)(69 74)(70 75)
(1 35)(2 31)(3 32)(4 33)(5 34)(6 16)(7 17)(8 18)(9 19)(10 20)(11 76)(12 77)(13 78)(14 79)(15 80)(21 28)(22 29)(23 30)(24 26)(25 27)(36 55)(37 51)(38 52)(39 53)(40 54)(41 48)(42 49)(43 50)(44 46)(45 47)(56 75)(57 71)(58 72)(59 73)(60 74)(61 68)(62 69)(63 70)(64 66)(65 67)
(1 50 30 36)(2 46 26 37)(3 47 27 38)(4 48 28 39)(5 49 29 40)(6 56 76 70)(7 57 77 66)(8 58 78 67)(9 59 79 68)(10 60 80 69)(11 63 16 75)(12 64 17 71)(13 65 18 72)(14 61 19 73)(15 62 20 74)(21 53 33 41)(22 54 34 42)(23 55 35 43)(24 51 31 44)(25 52 32 45)
(1 70 30 56)(2 66 26 57)(3 67 27 58)(4 68 28 59)(5 69 29 60)(6 50 76 36)(7 46 77 37)(8 47 78 38)(9 48 79 39)(10 49 80 40)(11 55 16 43)(12 51 17 44)(13 52 18 45)(14 53 19 41)(15 54 20 42)(21 73 33 61)(22 74 34 62)(23 75 35 63)(24 71 31 64)(25 72 32 65)
G:=sub<Sym(80)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,30)(2,26)(3,27)(4,28)(5,29)(6,76)(7,77)(8,78)(9,79)(10,80)(11,16)(12,17)(13,18)(14,19)(15,20)(21,33)(22,34)(23,35)(24,31)(25,32)(36,43)(37,44)(38,45)(39,41)(40,42)(46,51)(47,52)(48,53)(49,54)(50,55)(56,63)(57,64)(58,65)(59,61)(60,62)(66,71)(67,72)(68,73)(69,74)(70,75), (1,30)(2,26)(3,27)(4,28)(5,29)(6,11)(7,12)(8,13)(9,14)(10,15)(16,76)(17,77)(18,78)(19,79)(20,80)(21,33)(22,34)(23,35)(24,31)(25,32)(36,50)(37,46)(38,47)(39,48)(40,49)(41,53)(42,54)(43,55)(44,51)(45,52)(56,63)(57,64)(58,65)(59,61)(60,62)(66,71)(67,72)(68,73)(69,74)(70,75), (1,35)(2,31)(3,32)(4,33)(5,34)(6,16)(7,17)(8,18)(9,19)(10,20)(11,76)(12,77)(13,78)(14,79)(15,80)(21,28)(22,29)(23,30)(24,26)(25,27)(36,55)(37,51)(38,52)(39,53)(40,54)(41,48)(42,49)(43,50)(44,46)(45,47)(56,75)(57,71)(58,72)(59,73)(60,74)(61,68)(62,69)(63,70)(64,66)(65,67), (1,50,30,36)(2,46,26,37)(3,47,27,38)(4,48,28,39)(5,49,29,40)(6,56,76,70)(7,57,77,66)(8,58,78,67)(9,59,79,68)(10,60,80,69)(11,63,16,75)(12,64,17,71)(13,65,18,72)(14,61,19,73)(15,62,20,74)(21,53,33,41)(22,54,34,42)(23,55,35,43)(24,51,31,44)(25,52,32,45), (1,70,30,56)(2,66,26,57)(3,67,27,58)(4,68,28,59)(5,69,29,60)(6,50,76,36)(7,46,77,37)(8,47,78,38)(9,48,79,39)(10,49,80,40)(11,55,16,43)(12,51,17,44)(13,52,18,45)(14,53,19,41)(15,54,20,42)(21,73,33,61)(22,74,34,62)(23,75,35,63)(24,71,31,64)(25,72,32,65)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,30)(2,26)(3,27)(4,28)(5,29)(6,76)(7,77)(8,78)(9,79)(10,80)(11,16)(12,17)(13,18)(14,19)(15,20)(21,33)(22,34)(23,35)(24,31)(25,32)(36,43)(37,44)(38,45)(39,41)(40,42)(46,51)(47,52)(48,53)(49,54)(50,55)(56,63)(57,64)(58,65)(59,61)(60,62)(66,71)(67,72)(68,73)(69,74)(70,75), (1,30)(2,26)(3,27)(4,28)(5,29)(6,11)(7,12)(8,13)(9,14)(10,15)(16,76)(17,77)(18,78)(19,79)(20,80)(21,33)(22,34)(23,35)(24,31)(25,32)(36,50)(37,46)(38,47)(39,48)(40,49)(41,53)(42,54)(43,55)(44,51)(45,52)(56,63)(57,64)(58,65)(59,61)(60,62)(66,71)(67,72)(68,73)(69,74)(70,75), (1,35)(2,31)(3,32)(4,33)(5,34)(6,16)(7,17)(8,18)(9,19)(10,20)(11,76)(12,77)(13,78)(14,79)(15,80)(21,28)(22,29)(23,30)(24,26)(25,27)(36,55)(37,51)(38,52)(39,53)(40,54)(41,48)(42,49)(43,50)(44,46)(45,47)(56,75)(57,71)(58,72)(59,73)(60,74)(61,68)(62,69)(63,70)(64,66)(65,67), (1,50,30,36)(2,46,26,37)(3,47,27,38)(4,48,28,39)(5,49,29,40)(6,56,76,70)(7,57,77,66)(8,58,78,67)(9,59,79,68)(10,60,80,69)(11,63,16,75)(12,64,17,71)(13,65,18,72)(14,61,19,73)(15,62,20,74)(21,53,33,41)(22,54,34,42)(23,55,35,43)(24,51,31,44)(25,52,32,45), (1,70,30,56)(2,66,26,57)(3,67,27,58)(4,68,28,59)(5,69,29,60)(6,50,76,36)(7,46,77,37)(8,47,78,38)(9,48,79,39)(10,49,80,40)(11,55,16,43)(12,51,17,44)(13,52,18,45)(14,53,19,41)(15,54,20,42)(21,73,33,61)(22,74,34,62)(23,75,35,63)(24,71,31,64)(25,72,32,65) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,30),(2,26),(3,27),(4,28),(5,29),(6,76),(7,77),(8,78),(9,79),(10,80),(11,16),(12,17),(13,18),(14,19),(15,20),(21,33),(22,34),(23,35),(24,31),(25,32),(36,43),(37,44),(38,45),(39,41),(40,42),(46,51),(47,52),(48,53),(49,54),(50,55),(56,63),(57,64),(58,65),(59,61),(60,62),(66,71),(67,72),(68,73),(69,74),(70,75)], [(1,30),(2,26),(3,27),(4,28),(5,29),(6,11),(7,12),(8,13),(9,14),(10,15),(16,76),(17,77),(18,78),(19,79),(20,80),(21,33),(22,34),(23,35),(24,31),(25,32),(36,50),(37,46),(38,47),(39,48),(40,49),(41,53),(42,54),(43,55),(44,51),(45,52),(56,63),(57,64),(58,65),(59,61),(60,62),(66,71),(67,72),(68,73),(69,74),(70,75)], [(1,35),(2,31),(3,32),(4,33),(5,34),(6,16),(7,17),(8,18),(9,19),(10,20),(11,76),(12,77),(13,78),(14,79),(15,80),(21,28),(22,29),(23,30),(24,26),(25,27),(36,55),(37,51),(38,52),(39,53),(40,54),(41,48),(42,49),(43,50),(44,46),(45,47),(56,75),(57,71),(58,72),(59,73),(60,74),(61,68),(62,69),(63,70),(64,66),(65,67)], [(1,50,30,36),(2,46,26,37),(3,47,27,38),(4,48,28,39),(5,49,29,40),(6,56,76,70),(7,57,77,66),(8,58,78,67),(9,59,79,68),(10,60,80,69),(11,63,16,75),(12,64,17,71),(13,65,18,72),(14,61,19,73),(15,62,20,74),(21,53,33,41),(22,54,34,42),(23,55,35,43),(24,51,31,44),(25,52,32,45)], [(1,70,30,56),(2,66,26,57),(3,67,27,58),(4,68,28,59),(5,69,29,60),(6,50,76,36),(7,46,77,37),(8,47,78,38),(9,48,79,39),(10,49,80,40),(11,55,16,43),(12,51,17,44),(13,52,18,45),(14,53,19,41),(15,54,20,42),(21,73,33,61),(22,74,34,62),(23,75,35,63),(24,71,31,64),(25,72,32,65)]])
110 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | ··· | 4L | 5A | 5B | 5C | 5D | 10A | ··· | 10L | 10M | ··· | 10AJ | 20A | ··· | 20AV |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
110 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | - | + | |||||
image | C1 | C2 | C2 | C5 | C10 | C10 | Q8 | C5×Q8 | 2+ 1+4 | C5×2+ 1+4 |
kernel | C5×C23⋊2Q8 | C10×C22⋊C4 | C5×C22⋊Q8 | C23⋊2Q8 | C2×C22⋊C4 | C22⋊Q8 | C22×C10 | C23 | C10 | C2 |
# reps | 1 | 3 | 12 | 4 | 12 | 48 | 4 | 16 | 2 | 8 |
Matrix representation of C5×C23⋊2Q8 ►in GL6(𝔽41)
10 | 0 | 0 | 0 | 0 | 0 |
0 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 40 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
35 | 2 | 0 | 0 | 0 | 0 |
2 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(41))| [10,0,0,0,0,0,0,10,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[35,2,0,0,0,0,2,6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
C5×C23⋊2Q8 in GAP, Magma, Sage, TeX
C_5\times C_2^3\rtimes_2Q_8
% in TeX
G:=Group("C5xC2^3:2Q8");
// GroupNames label
G:=SmallGroup(320,1545);
// by ID
G=gap.SmallGroup(320,1545);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1120,1149,3446,891,856,2467]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^5=b^2=c^2=d^2=e^4=1,f^2=e^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*b*e^-1=f*b*f^-1=b*d=d*b,f*c*f^-1=c*d=d*c,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations